By Topic

Batch and Sequential Bayesian Estimators of the Number of Active Terminals in an IEEE 802.11 Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The performance of the IEEE 802.11 protocol based on the distributed coordination function (DCF) has been shown to be dependent on the number of competing terminals and the backoff parameters. Better performance can be expected if the parameters are adapted to the number of active users. In this paper we develop both off-line and online Bayesian signal processing algorithms to estimate the number of competing terminals. The estimation is based on the observed use of the channel and the number of competing terminals is modeled as a Markov chain with unknown transition matrix. The off-line estimator makes use of the Gibbs sampler whereas the first online estimator is based on the sequential Monte Carlo (SMC) technique. A deterministic variant of the SMC estimator is then developed, which is simpler to implement and offers superior performance. Finally a novel approximate maximum a posteriori (MAP) algorithm for hidden Markov models (HMM) with unknown transition matrix is proposed. Realistic IEEE 802.11 simulations using the ns-2 network simulator are provided to demonstrate the excellent performance of the proposed estimators

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 2 )