By Topic

Parallel Memory Implementation for Arbitrary Stride Accesses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eero Aho ; Institute of Digital and Computer Systems, Tampere University of Technology, Tampere, Finland, eero.aho@tut.fi ; Jarno Vanne ; Timo D. Hamalainen

Parallel memory modules can be used to increase memory bandwidth and feed a processor with only necessary data. Arbitrary stride access capability with interleaved memories is described in previous research where the skewing scheme is changed at run time according to the currently used stride. This paper presents the improved schemes which are adapted to parallel memories. The proposed novel parallel memory implementation allows conflict free accesses with all the constant strides which has not been possible in prior application specific parallel memories. Moreover, the possible access locations are unrestricted and the data patterns have equal amount of accessed data elements as the number of memory modules. Timing and area estimates are given for Altera Stratix FPGA and 0.18 micrometer CMOS process with memory module count from 2 to 32. The FPGA results show 129 MHz clock frequency for a system with 16 memory modules when read and write latencies are 3 and 2 clock cycles, respectively

Published in:

2006 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation

Date of Conference:

July 2006