By Topic

Robust Petri Fuzzy-Neural-Network Control for Linear Induction Motor Drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rong-Jong Wai ; Dept. of Electr. Eng., Yuan Ze Univ., Chung Li ; Chia-Chin Chu

This study focuses on the development of a robust Petri-fuzzy-neural-network (PFNN) control strategy applied to a linear induction motor (LIM) drive for periodic motion. Based on the concept of the nonlinear state feedback theory, a feedback linearization control (FLC) system is first adopted in order to decouple the thrust force and the flux amplitude of the LIM. However, particular system information is required in the FLC system so that the corresponding control performance is influenced seriously by system uncertainties. Hence, to increase the robustness of the LIM drive for high-performance applications, a robust PFNN control system is investigated based on the model-free control design to retain the decoupled control characteristic of the FLC system. The adaptive tuning algorithms for network parameters are derived in the sense of the Lyapunov stability theorem, such that the stability of the control system can be guaranteed under the occurrence of system uncertainties. The effectiveness of the proposed control scheme is verified by both numerical simulations and experimental results, and the salient merits are indicated in comparison with the FLC system

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 1 )