By Topic

Neural Network-Based Selective Compensation of Current Quality Problems in Distribution System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Singh, B. ; Dept. of Electr. Eng., Indian Inst. of Technol., New Delhi ; Verma, V. ; Solanki, J.

Active power filters (APFs) have been used to compensate harmonics, reactive current, and negative sequence fundamental frequency current drawn by nonlinear loads. The control of APF is the core issue for their proper operation. The flexibility of selective compensation embedded in the control scheme makes APF versatile for compensation of reactive power, harmonic currents, and unbalance in source currents and their combinations, depending upon the limited rating of voltage source inverter employed as APF. The proposed scheme utilizes neural network-based decomposition of the load current into positive and negative sequence fundamental frequency component, reactive component and harmonic components. The adaline-based current decomposer estimates the reference currents through tracking of unit vectors together with tuning of the weights. The implementation of the control scheme facilitates selective compensation which respects the limited rating of the APF. The simulated results using developed MATLAB model are presented and are validated by experimental results to depict the effectiveness of the proposed control method of APF

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 1 )