By Topic

Architectural-Level Power Optimization of Microcontroller Cores in Embedded Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sergio Saponara ; Dept. of Inf. Eng., Pisa Univ. ; Luca Fanucci ; Pierangelo Terreni

Power saving is becoming one of the major design drivers in electronic systems embedding microcontroller cores. Known microcontrollers typically save power at the expense of reduced computational capability. With reference to an 8051 core, this paper presents a novel clustered clock gating to increase power efficiency at architectural level without performance loss and preserving the reusability of the macrocell. Different from known clustered-gating strategies where the number of clusters is fixed a priori, the optimal cluster organization is derived, considering both the macrocell complexity and switching activity. When implementing the 8051 core in CMOS technology, the proposed approach leads to a 37% power saving, which is higher than the 29% permitted by automatic-clock-gating insertion in commercial computer-aided design tools or the 10% of state-of-the-art clustered-gating strategies. To assess its full functionality, the power-optimized cell has been proved in silicon that is embedded in an automotive system for sensors interface/control

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 1 )