By Topic

A Control Method to Charge Series-Connected Ultraelectric Double-Layer Capacitors Suitable for Photovoltaic Generation Systems Combining MPPT Control Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nobuyoshi Mutoh ; Graduate Sch., Tokyo Metropolitan Univ. ; Takayoshi Inoue

A control method is described to charge series-connected ultraelectric double-layer capacitors (ultra-EDLCs) suitable for photovoltaic generation systems in combination with a maximum power point tracking (MPPT) control method. The EDLC charge control method allows the maximum power acquired by the MPPT control to be quickly charged into series-connected ultra-EDLCs no matter how the weather conditions may change. In the MPPT control, the output current of the solar arrays is controlled so that the output power converges on the maximum power in the prediction line previously determined based on the linearity between the maximum output power and the optimization current. The proportionality coefficient of the prediction line is automatically corrected using the hill-climbing method when the panel temperature of the solar arrays is changed. The EDLC charge control is performed with the three charge modes, i.e., the constant current charge mode, constant power charge mode, and the constant voltage charge mode while supervising the maximum voltage and allowable temperature of each series-connected EDLC. Effectiveness of the methods is verified by simulations and experiments

Published in:

IEEE Transactions on Industrial Electronics  (Volume:54 ,  Issue: 1 )