Cart (Loading....) | Create Account
Close category search window
 

Network-Based Fuzzy Decentralized Sliding-Mode Control for Car-Like Mobile Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chih-Lyang Hwang ; Dept. of Electr. Eng., Tamkang Univ., Taipei ; Li-Jui Chang ; Yuan-Sheng Yu

In this paper, the trajectory tracking of a car-like mobile robot (CLMR) using network-based fuzzy decentralized sliding-mode control (NBFDSMC) is developed. The scaling factors and the coefficients of the sliding surface for the control of the steering angle and forward-backward velocity of a CLMR are adopted by that for the control of two motors. Due to the delay transmission of a signal through an Internet and wireless module, a revision of fuzzy decentralized sliding-mode control (FDSMC) with suitable sampling time (i.e., NBFDSMC) is accomplished by the quality-of-service (QoS). The proposed control can track a reference trajectory without the requirement of a mathematical model. Only the information of the upper bound of system knowledge (including the dynamics of the CLMR, the delay feature of Internet network, and wireless module) is required to select the suitable scaling factors and coefficients of sliding surface such that an excellent performance is obtained. In addition, the stability of the closed-loop system in the presence of time-varying delay is addressed. Finally, a sequence of experiments including the control of unloaded CLMR and the trajectory tracking of CLMR is carried out to consolidate the usefulness of the proposed control system

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 1 )

Date of Publication:

Feb. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.