By Topic

Power Converter Control Circuits for Two-Mass Vibratory Conveying System With Electromagnetic Drive: Simulations and Experimental Results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zeljko V. Despotovic ; Mechatronics Lab., Mihajlo Pupin Inst., Belgrade ; Zoran Stojiljkovic

A mathematical model of two-mass vibratory conveying system with electromagnetic vibratory actuator (EVA) and possible ways of their optimal control by using power converter is presented in this paper. Vibratory conveyors are commonly used in industry to carry a wide variety of particulate and granular materials. Application of electromagnetic vibratory drive combined with power converters provides flexibility during work. The use of a silicon-controlled rectifier (SCR) implies a phase angle control, which is very easy, but with many disadvantages (fixed frequency which is imposed by ac mains supply, poor power factor, mechanical retuning, etc.). Switching converters overcomes these disadvantages. Only then, driving for EVA does not depend on mains frequency. As well as amplitude and duration of excitation force tuning, it is also possible to tune its frequency. Consequently, complicated mechanical tuning is eliminated and seeking resonant frequency is provided. Previously mentioned facts motivated phase angle control and switch mode control behavior research for electromagnetic vibratory drives. Simulation and experimental results and their comparisons are exposed in this paper. The simulation model and results are given in the program package PSPICE. Experimental results are recorded on implemented control systems for SCR and transistor power converters. Partial results concerning the resonant frequency seeking process with transistor converter are also exposed

Published in:

IEEE Transactions on Industrial Electronics  (Volume:54 ,  Issue: 1 )