By Topic

Determination of Scaling Factors for Fuzzy Logic Control Using the Sliding-Mode Approach: Application to Control of a DC Machine Drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Betin, F. ; University of Picardie Jules Verne, Amiens ; Sivert, A. ; Yazidi, A. ; Capolino, G.-A.

In this paper, a new approach to define the optimum values of the scaling factors for a fuzzy logic controller, based on the sliding mode theory, has been proposed. Indeed, these factors are chosen in such a way that the trajectory in the phase plane is always attracted by the main diagonal of the fuzzy matrix and slides on this line. This approach was first tested in simulation to control the position of a permanent-magnet direct-current machine drive and then implemented on a low-cost 16-bit microcontroller. Furthermore, the scaling factors are tuned in function of the distance between the reference and the output in such a way as to cope with the discretization of the lookup table stored in the memory of the microcontroller. This algorithm has been successfully applied on an advanced test bed, which allows mechanical configuration changes

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 1 )