Cart (Loading....) | Create Account
Close category search window

Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Grisetti, G. ; Dept. of Comput. Sci., Freiburg Univ. ; Stachniss, C. ; Burgard, W.

Recently, Rao-Blackwellized particle filters (RBPF) have been introduced as an effective means to solve the simultaneous localization and mapping problem. This approach uses a particle filter in which each particle carries an individual map of the environment. Accordingly, a key question is how to reduce the number of particles. In this paper, we present adaptive techniques for reducing this number in a RBPF for learning grid maps. We propose an approach to compute an accurate proposal distribution, taking into account not only the movement of the robot, but also the most recent observation. This drastically decreases the uncertainty about the robot's pose in the prediction step of the filter. Furthermore, we present an approach to selectively carry out resampling operations, which seriously reduces the problem of particle depletion. Experimental results carried out with real mobile robots in large-scale indoor, as well as outdoor, environments illustrate the advantages of our methods over previous approaches

Published in:

Robotics, IEEE Transactions on  (Volume:23 ,  Issue: 1 )

Date of Publication:

Feb. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.