By Topic

Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ohara, Takuya ; NTT Network Innovation Labs., NTT Corp., Yokosuka ; Takara, H. ; Shake, I. ; Yamada, Takashi
more authors

This paper reports 160-Gb/s optical time-division-multiplexed (OTDM) technologies including an all-optical integrated multiplexer (MUX) providing all-channel independent modulation, an all-optical integrated demultiplexer (DEMUX) that offers all-channel simultaneous demultiplexing, and a drift-free phase-locked-loop (PLL)-type clock recovery circuit for ultrahigh-speed OTDM signals. We present the configuration of each technology and the results of experiments on those technologies. Highly stable operation is successfully demonstrated by using a MUX based on periodically-poled lithium niobate (PPLN) hybrid integrated planer lightwave circuit (PLC), a DEMUX based on semiconductor optical amplifier hybrid integrated PLC, and clock recovery circuit based on a PLL with an optical phase modulator and a PPLN waveguide

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:13 ,  Issue: 1 )