By Topic

An Unsupervised Learning Problem Using Limited Storage Capacity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Spooner, R.L. ; Bolt Beranek and Newman, Inc. 1501 Wilson Boulevard Arlington, Va. 22209 ; Jaarsma, D.

In unsupervised learning pattern recognition problems, the need arises for updating conditional density functions of uncertain parameters using probability density function mixtures. In general, the form of the density mixtures is not reproducing, invoking the need for unlimited system storage requirements. One suboptimal method for achieving limited storage is to restrict the uncertain parameters in question to come from finite sets of values. An alternate method is proposed for a class of problems and its performance is shown to converge to that of the optimum unlimited storage system. A generalization of the procedure is also discussed.

Published in:

Systems Science and Cybernetics, IEEE Transactions on  (Volume:6 ,  Issue: 2 )