By Topic

On the numerical accuracy of the boundary element method (EEG application)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meijs, Jan W.H. ; Twente Univ., Enschede, Netherlands ; Weier, O.W. ; Peters, Maria J. ; van Oosterom, A.

The numerical accuracy of the boundary element (BE) method used to solve the volume conduction problem of nested compartments, each having a homogeneous conductivity, is studied. The following techniques for improving this accuracy are discussed: the handling of the auto solid angle element Omega ii, the overall refinement of the level of discreteness, the use of a locally refined discrete grid, the isolated problem approach, and an adaptive refined computation of the discrete surface integrals involved in the BE method. The effects of these techniques on the numerical accuracy of the computed electrical potentials are illustrated by taking a volume conductor consisting of four concentric spheres representing the head since for this model an analytical (exact) solution is available. The techniques are of importance for numerically computed electroencephalograms (EEGs) since the numerically computed surface EEGs are severely affected by the relatively low conductivity of the compartment representing the skull.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:36 ,  Issue: 10 )