Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Robust proportional integral derivative controller tuning with specifications on the infinity-norm of sensitivity functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Garcia, D. ; Lab. d'Automatique, Lausanne ; Karimi, A. ; Longchamp, R.

An overview of the recent works on proportional integral derivative (PID) controller tuning methods based on specifications on the infinity-norm of the sensitivity functions is presented. The presented approach is very flexible relative to the controller structure and the a priori knowledge about the process. It can be applied to plants described by parametric models, frequency domain non-parametric models as well as in a model-free framework. For the latter, procedures for measuring the design parameters values are described. The problem is then solved by minimising iteratively a frequency criterion, defined as the weighted sum of squared errors between the actual values and desired values of the design parameters. If the plant is described by a parametric model, model uncertainty can be handled to guarantee stability and performance robustness of the designed closed-loop system. Simulation examples are provided to compare the results obtained with the proposed approach to those resulting from well-accepted PID controller tuning methods. An application of the proposed method to a double-axis permanent-magnet synchronous motor illustrates the effectiveness of the approach to control of systems with large uncertainties.

Published in:

Control Theory & Applications, IET  (Volume:1 ,  Issue: 1 )