By Topic

Location Estimation via Support Vector Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhi-Li Wu ; Dept. of Comput. Sci., Hong Kong Baptist Univ. ; Chun-Hung Li ; Ng, J.K.-Y. ; Leung, K.R.P.

Location estimation using the global system for mobile communication (GSM) is an emerging application that infers the location of the mobile receiver from multiple signals measurements. While geometrical and signal propagation models have been deployed to tackle this estimation problem, the terrain factors and power fluctuations have confined the accuracy of such estimation. Using support vector regression, we investigate the missing value location estimation problem by providing theoretical and empirical analysis on existing and novel kernels. A novel synthetic experiment is designed to compare the performances of different location estimation approaches. The proposed support vector regression approach shows promising performances, especially in terrains with local variations in environmental factors

Published in:

Mobile Computing, IEEE Transactions on  (Volume:6 ,  Issue: 3 )