Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Understanding and Exploiting the Trade-Offs between Broadcasting and Multicasting in Mobile Ad Hoc Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Law, L.K. ; Dept. of Comput. Sci. & Eng., California Univ., Riverside, CA ; Krishnamurthy, S.V. ; Faloutsos, Michalis

We find that current group communications protocols are far from "one size fits all", they are typically geared toward and optimized for particular scenarios. Multicasting, in general, works well if the density of group members is sparse and in low mobility; broadcasting, in contrast, works well with a high density of group members and in high mobility. Due to the dynamics of the network, one strategy may be preferable to the other at different times and in different localized regions. In this paper, we first quantify the trade-offs between broadcasting and multicasting and evaluate the suitability of a strategy in various scenarios of deployment. Based on the lessons learned, we design a protocol that adapts in response to the dynamics of the network. We named our protocol Fireworks. Fireworks is a hybrid two-tier multicast/broadcast protocol that provides efficient and lightweight multicast dissemination and self-adapts in response to variations in the density and distribution of group members to provide efficient performance. Fireworks creates pockets of broadcast distribution in areas with many members, while it creates and maintains a multicast backbone to interconnect these dense pockets. Fireworks offers packet delivery statistics comparable to that of a pure multicast scheme but with significantly lower overheads. We also show that Fireworks has a lower level of degrading influence on the performance of coexisting unicast sessions than either traditional multicast or broadcast methods

Published in:

Mobile Computing, IEEE Transactions on  (Volume:6 ,  Issue: 3 )