By Topic

The application of fast adaptive wavelet expansion method in the computation of parameter matrices of multiple lossy transmission lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guang-Wen Pan ; Lab. for Signal Propagation, Wisconsin Univ., Milwaukee, WI, USA ; Xiaojun Zhu

The resistance and inductance matrices for multiple lossy transmission lines are evaluated from a two-dimensional field solution. This field solution is obtained by using a wavelet expansion method to solve a set of surface integral equations. The original two-dimensional integral equations are converted into one-dimensional integral equations by mapping the conductor surfaces into a periodic Hilbert space. The new operators are then expanded into wavelets by the modified nonstandard decomposition method. An Nlog(N) algorithm is obtained by employing the fast wavelet transform. The computational complexity of the matrix elements is reduced greatly by utilizing piecewise polynomial decompositions. The computation time is also reduced significantly by increasing the resolution levels of the wavelets; instead of increasing the number of basis functions, in order to accurately represent the behavior of the normal derivative at low frequencies. In addition, a very sparse and well conditioned matrix is obtained. As a result, the frequency range of the integral equation method has been extended at least three orders magnitude toward the lower end, than was feasible using conventional basis functions by Tsuk and Kong (see IEEE Trans. on Microwave Theory and Technique, vol.39, no.8, 1991).<>

Published in:

Antennas and Propagation Society International Symposium, 1994. AP-S. Digest  (Volume:1 )

Date of Conference:

20-24 June 1994