Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Nonlinear Diffusion in Laplacian Pyramid Domain for Ultrasonic Speckle Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Fan Zhang ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Yang Mo Yoo ; Koh Liang Mong ; Yongmin Kim

A new speckle reduction method, i.e., Laplacian pyramid-based nonlinear diffusion (LPND), is proposed for medical ultrasound imaging. With this method, speckle is removed by nonlinear diffusion filtering of bandpass ultrasound images in Laplacian pyramid domain. For nonlinear diffusion in each pyramid layer, a gradient threshold is automatically determined by a variation of median absolute deviation (MAD) estimator. The performance of the proposed LPND method has been compared with that of other speckle reduction methods, including the recently proposed speckle reducing anisotropic diffusion (SRAD) and nonlinear coherent diffusion (NCD). In simulation and phantom studies, an average gain of 1.55 dB and 1.34 dB in contrast-to-noise ratio was obtained compared to SRAD and NCD, respectively. The visual comparison of despeckled in vivo ultrasound images from liver and carotid artery shows that the proposed LPND method could effectively preserve edges and detailed structures while thoroughly suppressing speckle. These preliminary results indicate that the proposed speckle reduction method could improve image quality and the visibility of small structures and fine details in medical ultrasound imaging

Published in:

Medical Imaging, IEEE Transactions on  (Volume:26 ,  Issue: 2 )