By Topic

Process Platform Planning for Variety Coordination From Design to Production in Mass Customization Manufacturing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianxin Jiao ; Sch. of Mech. & Aerosp. Eng., Nanyang Technol. Univ., Singapore ; Lianfeng Zhang ; Pokharel, S.

The key challenge of implementing mass customization manufacturing lies in the variety dilemma exhibited by frequent design changes and recurrent process variations. A holistic view of variety handling gives rise to the importance of variety coordination from design to production. This paper proposes a concept of process platform for coordinating product and process variety. Fundamental issues of process platforms are studied regarding generic product and process structures, generic planning, and generic variety representation. Variety handlers and associated states are introduced to model the meta-structure inherent in variety coordination. A set of modeling formalisms are developed to provide a powerful syntactic model to support rigorous analysis and manipulation of process platforms, while facilitating the application of semantics to support process platform enactment and detailed observations from a number of perspectives involving customers, design and production. Also reported is a case study of mass customization manufacturing of vibration motors for mobile phone products. The managerial implications of process platform planning are further discussed

Published in:

Engineering Management, IEEE Transactions on  (Volume:54 ,  Issue: 1 )