Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Design of Adaptive Multimode RF Front-End Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tasic, A. ; Dept. of Microelectron., Delft Univ. of Technol. ; Su-Tarn Lim ; Serdijn, W.A. ; Long, J.R.

Migration towards higher data rates and higher capacities for multimedia applications, and provision of various services (text, audio, video) from different wireless standards with the same device require integrated designs that work across multiple standards, can easily be reused, and achieve maximum hardware share at minimum power consumption. This can be achieved by using adaptive circuits that are able to trade off power consumption for performance. The design of an adaptive multimode image-reject downconverter (oscillator and two mixers) is presented in this paper. In the highest performance mode, the image-reject downconverter (the quadrature mixers) has an IIP3 of +5.5 dBm, a single-side band noise figure of 13.9dB and a conversion gain of 1.4 dB, while drawing 10mA from a 3 V supply. The adaptive oscillator achieves -123 dBc/Hz phase noise at 1MHz offset from a 2.1 GHz carrier with a bias current of 6 mA in the highest performance mode. Adaptivity in the downconverter is achieved by trading off RF performance for current consumption, ranging from 10 mA for the relaxed mode (e.g., DECT) to 20 mA in the highest performance mode (e.g., DCS1800) of operation

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:42 ,  Issue: 2 )