By Topic

Power Distribution Fault Cause Identification With Imbalanced Data Using the Data Mining-Based Fuzzy Classification E-Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Le Xu ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC ; Mo-Yuen Chow ; Taylor, L.S.

Power distribution systems have been significantly affected by many outage-causing events. Good fault cause identification can help expedite the restoration procedure and improve the system reliability. However, the data imbalance issue in many real-world data sets often degrades the fault cause identification performance. In this paper, the E-algorithm, which is extended from the fuzzy classification algorithm by Ishibuchi to alleviate the effect of imbalanced data constitution, is applied to Duke Energy outage data for distribution fault cause identification. Three major outage causes (tree, animal, and lightning) are used as prototypes. The performance of E-algorithm on real-world imbalanced data is compared with artificial neural network. The results show that the E-algorithm can greatly improve the performance when the data are imbalanced

Published in:

Power Systems, IEEE Transactions on  (Volume:22 ,  Issue: 1 )