By Topic

A New Particle Swarm Optimization Solution to Nonconvex Economic Dispatch Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Immanuel Selvakumar ; Dept. of Electr. Sci., Karunya Deemed Univ., Coimbatore ; K. Thanushkodi

This paper proposes a new version of the classical particle swarm optimization (PSO), namely, new PSO (NPSO), to solve nonconvex economic dispatch problems. In the classical PSO, the movement of a particle is governed by three behaviors, namely, inertial, cognitive, and social. The cognitive behavior helps the particle to remember its previously visited best position. This paper proposes a split-up in the cognitive behavior. That is, the particle is made to remember its worst position also. This modification helps to explore the search space very effectively. In order to well exploit the promising solution region, a simple local random search (LRS) procedure is integrated with NPSO. The resultant NPSO-LRS algorithm is very effective in solving the nonconvex economic dispatch problems. To validate the proposed NPSO-LRS method, it is applied to three test systems having nonconvex solution spaces, and better results are obtained when compared with previous approaches

Published in:

IEEE Transactions on Power Systems  (Volume:22 ,  Issue: 1 )