By Topic

Parallel Optimal Reactive Power Flow Based on Cooperative Co-Evolutionary Differential Evolution and Power System Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang, C.H. ; Coll. of Electr. & Electron. Eng., Huazhong Univ. of Sci. & Technol., Wuhan ; Chung, C.Y. ; Wong, K.P. ; Duan, X.Z.

Differential evolution (DE) is a promising evolutionary algorithm for solving optimal reactive power flow problems, but it requires relatively large population to avoid premature convergence. In order to overcome this disadvantage, a novel decomposition and coordination method based on the cooperative co-evolutionary architecture and the voltage-var sensitivity-based power system decomposition technique is proposed and incorporated with DE in this paper. It is implemented with a three-level parallel computing topology on a PC-cluster. Based on the IEEE 118-bus system test case, the effectiveness of the proposed method has been verified by comparison with the parallel basic DE not using the decomposition and coordination technique

Published in:

Power Systems, IEEE Transactions on  (Volume:22 ,  Issue: 1 )