Cart (Loading....) | Create Account
Close category search window
 

Quantum Key Distribution with Classical Bob

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Boyer, Michel ; Dept. IRO, Univ. de Montreal, Montreal, QC ; Kenigsberg, D. ; Mor, T.

Secure key distribution among two remote parties is impossible when both are classical, unless some unproven (and arguably unrealistic) computation-complexity assumptions are made, such as the difficulty of factorizing large numbers. On the other hand, a secure key distribution is possible when both parties are quantum. What is possible when only one party (Alice) is quantum, yet the other (Bob) has only classical capabilities? We present two protocols with this constraint, and prove their robustness against attacks: we prove that any attempt of an adversary to obtain information (and even a tiny amount of information) necessarily induces some errors that the legitimate users could notice.

Published in:

Quantum, Nano, and Micro Technologies, 2007. ICQNM '07. First International Conference on

Date of Conference:

2-6 Jan. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.