By Topic

An Adaptable Energy-Efficient Medium Access Control Protocol for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Justin T. Kautz ; 23rd Information Operations Squadron, Lackland, AFB TX ; Barry E. Mullins ; Rusty O. Baldwin ; Scott R. Graham

We propose a medium access control protocol for wireless sensor networks (WSN) called adaptive sensor medium access control (AMAC), which is based on the sensor medium access control (S-MAC) protocol. Since WSNs are energy constrained, the lifetime of the network must be increased by making it as energy efficient as possible. Whereas S-MAC uses a fixed duty cycle for sleeping, AMAC adapts to traffic conditions by incorporating multiple duty cycles. Under a high traffic load, AMAC has a short duty cycle and awakes more often. Under a low traffic load, AMAC has a longer duty cycle and awakes infrequently. The AMAC protocol is simulated in OPNET Modeler. Analysis indicates that AMAC uses 15% less power and 22% less energy cost per byte than S-MAC with a tradeoff in twice the latency. For an application insensitive to latency, the AMAC protocol offers an extended lifetime

Published in:

System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on

Date of Conference:

Jan. 2007