By Topic

System-level design automation tools for digital microfluidic biochips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fei Su ; Duke University, Durham, NC ; Chakrabarty, K.

Biochips based on digital microfluidics offer a powerful platform for massively parallel biochemical analysis such as clinical diagnosis and DNA sequencing. Current full-custom design techniques for digital microfluidic biochips do not scale well for increasing levels of system integration. Analogous to classical VLSI synthesis, a top-down system-level design automation approach can shorten the biochip design cycle and reduce human effort. We present here an overview of a system-level design methodology that includes architectural synthesis and physical design. The proposed design automation approach is expected to relieve biochip users from the burden of manual optimization of bioassays, time-consuming hardware design, and costly testing and maintenance procedures.

Published in:

Hardware/Software Codesign and System Synthesis, 2005. CODES+ISSS '05. Third IEEE/ACM/IFIP International Conference on

Date of Conference:

Sept. 2005