By Topic

Learning to improve the path accuracy of position controlled robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lange, F. ; Inst. of Robotics & Syst. Dynamics, German Aerosp. Res. Establ., Wessling, Germany ; Hirzinger, Gerhard

A learning method is presented which improves the dynamic accuracy of conventional industrial robots with integrated position control. The method is based on feedforward control being able to follow off-line programmed trajectories with high speed and negligible pose errors. For learning, the robot has to be moved along a given path. The algorithm then estimates a simple model. This model is used to build a controller which is able to modify positional commands, thus reducing the positional path error from some millimeters to approximately 0.2 mm for a Manutec r2 robot. This improvement is valid also for other, non-trained trajectories. For repetitive control of a single path the error is even lower. Measurements of path accuracy are verified using data of a force/torque sensor during tracking a known contour

Published in:

Intelligent Robots and Systems '94. 'Advanced Robotic Systems and the Real World', IROS '94. Proceedings of the IEEE/RSJ/GI International Conference on  (Volume:1 )

Date of Conference:

12-16 Sep 1994