By Topic

Reverse Nearest Neighbors Search in Ad Hoc Subspaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Man Lung Yiu ; Dept. of Comput. Sci., Aalborg Univ. ; Nikos Mamoulis

Given an object q, modeled by a multidimensional point, a reverse nearest neighbors (RNN) query returns the set of objects in the database that have q as their nearest neighbor. In this paper, we study an interesting generalization of the RNN query, where not all dimensions are considered, but only an ad hoc subset thereof. The rationale is that 1) the dimensionality might be too high for the result of a regular RNN query to be useful, 2) missing values may implicitly define a meaningful subspace for RNN retrieval, and 3) analysts may be interested in the query results only for a set of (ad hoc) problem dimensions (i.e., object attributes). We consider a suitable storage scheme and develop appropriate algorithms for projected RNN queries, without relying on multidimensional indexes. Given the significant cost difference between random and sequential data accesses, our algorithms are based on applying sequential accesses only on the projected atomic values of the data at each dimension, to progressively derive a set of RNN candidates. Whether these candidates are actual RNN results is then validated via an optimized refinement step. In addition, we study variants of the projected RNN problem, including RkNN search, bichromatic RNN, and RNN retrieval for the case where sequential accesses are not possible. Our methods are experimentally evaluated with real and synthetic data

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:19 ,  Issue: 3 )