By Topic

K-Means+ID3: A Novel Method for Supervised Anomaly Detection by Cascading K-Means Clustering and ID3 Decision Tree Learning Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we present "k-means+ID3", a method to cascade k-means clustering and the ID3 decision tree learning methods for classifying anomalous and normal activities in a computer network, an active electronic circuit, and a mechanical mass-beam system. The k-means clustering method first partitions the training instances into k clusters using Euclidean distance similarity. On each cluster, representing a density region of normal or anomaly instances, we build an ID3 decision tree. The decision tree on each cluster refines the decision boundaries by learning the subgroups within the cluster. To obtain a final decision on classification, the decisions of the k-means and ID3 methods are combined using two rules: 1) the nearest-neighbor rule and 2) the nearest-consensus rule. We perform experiments on three data sets: 1) network anomaly data (NAD), 2) Duffing equation data (DED), and 3) mechanical system data (MSD), which contain measurements from three distinct application domains of computer networks, an electronic circuit implementing a forced Duffing equation, and a mechanical system, respectively. Results show that the detection accuracy of the k-means+ID3 method is as high as 96.24 percent at a false-positive-rate of 0.03 percent on NAD; the total accuracy is as high as 80.01 percent on MSD and 79.9 percent on DED

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:19 ,  Issue: 3 )