Cart (Loading....) | Create Account
Close category search window

Unsupervised Identifying Diagnostic Genes and Specific Phenotypes from Microarray Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Yuhai Zhao ; Northeastern Univ. ; Ying Yin ; Guoren Wang

In this paper, we explore a new problem of simultaneously mining diagnostic genes and specific phenotypes from microarray data using unsupervised method. A novel type of cluster called LC-Cluster is proposed to address this problem. The idea behind the solution is motivated by recent biological discovery and origins from current bicluster model or emerging pattern, but differs substantially from either of them. We also design two efficient tree-based algorithms, namely FALCONER and E-FALCONER, to mine all such maximal clusters. Extensive experiments conducted on both several real and synthetic datasets show: (1) our approaches are efficient and effective, (2) our approaches outperform the existing enumeration tree-based algorithm, and (3) our approaches can discover an amount of LC-Clusters, which are potentially of high biological significance

Published in:

Computational Intelligence and Security, 2006 International Conference on  (Volume:1 )

Date of Conference:

Nov. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.