By Topic

Behavioral simulation for analog system design verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. A. A. Antao ; Dept. of Electr. Eng., Vanderbilt Univ., Nashville, TN, USA ; A. J. Brodersen

Synthesis of analog circuits is an emergent field, with efforts focused at the cell level. With the growing trend of mixed ASIC designs that contain significant portions of analog sections, compatible design methodologies in the analog domain are necessary to complement those in the digital domain. The synthesis process requires an associated verification process to ensure that the designs meet performance specifications at the onset. In this paper we present a behavioral simulation methodology for analog system design verification and design space exploration. The verification task integrates with analog system-level synthesis for an integrated synthesis-verification process that avoids expensive post synthesis simulation by invoking external simulators. Thus rapid redesign at the architectural level can be undertaken for design parameter variation and during optimization. The verification suite is composed of a repertoire of analysis modes that include time and frequency domain analysis, sensitivity analysis and distortion analysis. Besides verification of design specifications, these analysis modes are also used to generate metrics for comparison of various architectural choices that could realize a given set of specifications. The implementation is in the form of a behavioral simulator, ARCHSIM.<>

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:3 ,  Issue: 3 )