Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Design of a static MIMD data flow processor using micropipelines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chih-Ming Chang ; Dept. of Electr. & Comput. Eng., Oregon State Univ., Corvallis, OR, USA ; Shih-Lien Lu

Control-flow machines are sequential in nature, executing instructions in sequence through control of program counters, whereas data-flow machines execute instructions only as input operands are made available, a process directed at the parallelism inherent within programs. At the architecture level, data-flow machines execute instructions asynchronously. In contrast, at the implementation level, the synchronous design framework of computer systems which employs globally clocked timing discipline has reached its design limits owing to problems of clock distribution. Therefore, renewed interest has been expressed in the design of computer systems based upon an asynchronous (or self-timed) approach free of the discipline imposed by the global clock. Thus, the design of a static MIMD data-flow processor using micropipelines is presented. The implemented processor, or the micro data-flow processor, differs from processors previously reported insofar as the micro data-flow processor is wholly asynchronous at both the architectural and the implementation levels.<>

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:3 ,  Issue: 3 )