By Topic

Distributed load balancing for parallel main memory hash join

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. R. Tout ; University Microfilm International, USA ; S. Praminik

Parallel joins have been widely studied during the past decade and a number of efficient algorithms were presented. While it is known that the performance of these algorithms may suffer greatly in the presence of skewed input data, the work on load balancing schemes for parallel join has been limited. The main contribution of this paper is the development and analysis of a new distributed data structure and an effective load balancing scheme for parallel main memory hash join on NUMA architecture. Multiprocessors based on this architecture are scalable in both size of main memory and number of processors, and provide very high memory bandwidth. The load balancing scheme is based on random probing to avoid the hot spot problems caused by probing sequentially. We have modeled this load balancing scheme both analytically and experimentally. The experiments were run on a BBN TC2000 multiprocessor system

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:6 ,  Issue: 8 )