By Topic

Alignment using an uncalibrated camera system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yoshimi, B.H. ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; Allen, P.K.

We describe a method for the visual control of a robotic system which does not require the formulation of an explicit calibration between image coordinates and the world coordinates. By extracting control information directly from the image, we free our technique from the errors normally associated with a fixed calibration. We attach a camera system to a robot such that the camera system and the robot's gripper rotate simultaneously. As the camera system rotates about the gripper's rotational axis, the circular path traced out by a point-like feature projects to an elliptical path in image space. We gather the projected feature points over part of a rotation and fit the gathered data to an ellipse. The distance from the rotational axis to the feature point in world space is proportional to the size of the generated ellipse. As the rotational axis gets closer to the feature, the feature's projected path will form smaller and smaller ellipses. When the rotational axis is directly above the object, the trajectory degenerates from an ellipse to a single point. We demonstrate the efficacy of the algorithm on the peg-in-hole problem

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:11 ,  Issue: 4 )