By Topic

Performance Generalization in Biometric Authentication Using Joint User-Specific and Sample Bootstraps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Biometric authentication performance is often depicted by a detection error trade-off (DET) curve. We show that this curve is dependent on the choice of samples available, the demographic composition and the number of users specific to a database. We propose a two-step bootstrap procedure to take into account the three mentioned sources of variability. This is an extension to the Bolle et al.'s bootstrap subset technique. Preliminary experiments on the NIST2005 and XM2VTS benchmark databases are encouraging, e.g., the average result across all 24 systems evaluated on NIST2005 indicates that one can predict, with more than 75 percent of DET coverage, an unseen DET curve with eight times more users. Furthermore, our finding suggests that with more data available, the confidence intervals become smaller and, hence, more useful

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:29 ,  Issue: 3 )