By Topic

On Classification with Incomplete Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Williams, D. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC ; Xuejun Liao ; Ya Xue ; Carin, L.
more authors

We address the incomplete-data problem in which feature vectors to be classified are missing data (features). A (supervised) logistic regression algorithm for the classification of incomplete data is developed. Single or multiple imputation for the missing data is avoided by performing analytic integration with an estimated conditional density function (conditioned on the observed data). Conditional density functions are estimated using a Gaussian mixture model (GMM), with parameter estimation performed using both expectation-maximization (EM) and variational Bayesian EM (VB-EM). The proposed supervised algorithm is then extended to the semisupervised case by incorporating graph-based regularization. The semisupervised algorithm utilizes all available data-both incomplete and complete, as well as labeled and unlabeled. Experimental results of the proposed classification algorithms are shown

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 3 )