By Topic

Griffith–Kelly–Sherman Correlation Inequalities: A Useful Tool in the Theory of Error Correcting Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Macris, N. ; Ecole Polytech. Fed. de Lausanne

It is shown that a correlation inequality of statistical mechanics can be applied to linear low-density parity-check codes. Thanks to this tool we prove that, under a natural assumption, the exponential growth rate of regular low-density parity-check (LDPC) codes, can be computed exactly by iterative methods, at least on the interval where it is a concave function of the relative weight of code words. Then, considering communication over a binary input additive white Gaussian noise channel with a Poisson LDPC code we prove that, under a natural assumption, part of the GEXIT curve (associated to MAP decoding) can also be computed exactly by the belief propagation algorithm. The correlation inequality yields a sharp lower bound on the GEXIT curve. We also make an extension of the interpolation techniques that have recently led to rigorous results in spin glass theory and in the SAT problem

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 2 )