By Topic

Application of DInSAR-GPS Optimization for Derivation of Fine-Scale Surface Motion Maps of Southern California

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Sergey Samsonov ; Dept. of Earth Sci., Univ. of Western Ontario, London, Ont. ; Kristy Tiampo ; John Rundle ; Zhenhong Li

A method based on random field theory and Gibbs-Markov random fields equivalency within Bayesian statistical framework is used to derive 3-D surface motion maps from sparse global positioning system (GPS) measurements and differential interferometric synthetic aperture radar (DInSAR) interferogram in the southern California region. The minimization of the Gibbs energy function is performed analytically, which is possible in the case when neighboring pixels are considered independent. The problem is well posed and the solution is unique and stable and not biased by the continuity condition. The technique produces a 3-D field containing estimates of surface motion on the spatial scale of the DInSAR image, over a given time period, complete with error estimates. Significant improvement in the accuracy of the vertical component and moderate improvement in the accuracy of the horizontal components of velocity are achieved in comparison with the GPS data alone. The method can be expanded to account for other available data sets, such as additional interferograms, lidar, or leveling data, in order to achieve even higher accuracy

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:45 ,  Issue: 2 )