By Topic

High Moment Materials and Fabrication Processes for Shielded Perpendicular Write Head Beyond 200 Gb/in2

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Chen, Y. ; Magnetic Head Oper., Western Digital Corp, Fremont, CA ; Sin, K. ; Jiang, H. ; Tang, Y.
more authors

Commercial hard-drive products utilizing perpendicular magnetic recording technology have recently been announced and introduced. In this paper, we review key magnetic materials characteristics and wafer process attributes in fabricating perpendicular write heads. It becomes increasingly important for write-head materials to possess not only high magnetic moment, but also optimal coercivity, remanence, anisotropy Hk, magnetostriction, and stress in order to meet head performance and reliability requirements. Advanced materials and film architectures discussed in this paper resulted in a significantly improved performance margin, including reduced pole erasure; hence enabling higher recording densities. Novel wafer-processing techniques are required for fabrication of 3-D pole features with controlled shape, and with critical dimensions of less than 150 nm. The advance in wafer process has been driven by rapidly decreasing trackwidth, as well as by the evolving head architecture from unshielded rectangular pole to shielded trapezoidal pole

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 2 )