By Topic

Current–Voltage Characteristics of Long-Channel Nanobundle Thin-Film Transistors: A “Bottom-Up” Perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pimparkar, N. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN ; Cao, Q. ; Kumar, S. ; Murthy, J.Y.
more authors

By generalizing the classical linear response theory of "stick" percolation to nonlinear regime, we find that the drain-current of a nanobundle thin-film transistor (NB-TFT) is described under a rather general set of conditions by a universal scaling formula ID=A/LSxi(LS/LC,rho SLS 2)timesf(VG,VD ), where A is a technology-specific constant, xi is a function of geometrical factors such as stick length LS, channel length LC, and stick density rhoS, and f is a function of drain VD and gate VG biasing conditions. This scaling formula implies that the measurement of the full current-voltage characteristics of a "single" NB-TFT is sufficient to predict the performance characteristics of any other transistor with arbitrary geometrical parameters and biasing conditions

Published in:

Electron Device Letters, IEEE  (Volume:28 ,  Issue: 2 )