By Topic

Analysis, modeling, and simulation of series-parallel resonant converter circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Siu-Chung Wong ; Dept. of Electron. Eng., Hong Kong Polytech., Hong Kong ; A. D. Brown

This paper presents a SPICE macromodel for a generic series-parallel resonant converter circuit. The model is derived from the averaged time-invariant state-space equations obtained from a Fourier transform. The conditions are derived under which all but the fundamental harmonic may be discarded, and the model developed based solely on the fundamental Fourier component. The single macromodel developed has a wide range of validity, and allows DC, AC, and transient analyses to be carried out in a fast, easy, and familiar manner. It also permits the converter to be incorporated alongside its control circuitry into an entire system. The simulation results from the model have been compared to results from a full simulation, and the agreement is found to be excellent, with the macromodel simulation running between 37 and 4700 times faster than the full simulation

Published in:

IEEE Transactions on Power Electronics  (Volume:10 ,  Issue: 5 )