By Topic

High-Temperature Stable IrxSi Gates With High Work Function on HfSiON p-MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Hung, B.F. ; Dept. of Electron. Eng., Nat. Chiao-Tung Univ., Hsinchu ; Wu, C.H. ; Chin, Albert ; Wang, S.J.
more authors

A novel 1000 degC-stable IrxSi gate on HfSiON is shown for the first time with full process compatibility to current very-large-scale-integration fabrication lines and proper effective work function of 4.95 eV at 1.6-nm equivalent-oxide thickness. In addition, small threshold voltages and good hole mobilities are measured in IrxSi/HfSiON transistors. The 1000 degC thermal stability above pure metal (900 degC only) is due to the inserted 5-nm amorphous Si, which also gives less Fermi-level pinning by the accumulated metallic full silicidation at the interface

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 2 )