By Topic

Reliability and Thermal Stability of Clustered Vertical Furnace-Grown SiO2 With HfxTayN Metal Gate for Advanced MOS Device Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kuei-Shu Chang-Liao ; Dept. of Eng. & Syst. Sci., Nat. Tsing-Hua Univ., Hsinchu ; Cheng, Chin-Lung ; Chun-Yuan Lu ; Sahu, B.S.
more authors

Native oxides at the Si surface on the electrical properties of MOS devices are crucial problems. To study these issues, the thermal stability and electrical characteristics of MOS devices with clustered vertical furnace-grown, native oxide-free, ultrathin gate oxides and Hf xTayN metal gates were investigated. Postmetallization annealing (PMA) was carried out to study the metal-diffusion effects. Time-of-flight secondary ion mass spectroscopy analysis results show that the diffusion depths of Hf and Ta in the gate oxide are small and stay almost constant with a PMA temperature of up to 950 degC. Compared to those with conventional horizontal furnace-grown oxides, MOS devices with advanced clustered vertical furnace-grown gate oxides show excellent electrical characteristics, such as equivalent oxide thickness, hysteresis, interface trap density, stress-induced leakage current, defect generation rate, and stress-induced flat-band voltage shift. With an increase in PMA temperature, the electrical characteristics remain almost unchanged, which, in turn, achieve the excellent thermal stability and electrical reliabilities of MOS devices with clustered vertical furnace-grown gate oxides and Hf0.27Ta0.58N0.15 metal gates

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 2 )