Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Thermal Parametric Imaging in the Evaluation of Skin Burn Depth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ruminski, J. ; Dept. of Biomed. Eng., Gdansk Univ. of Technol. ; Kaczmarek, M. ; Renkielska, A. ; Nowakowski, A.

The aim of this paper is to determine the extent to which infrared (IR) thermal imaging may be used for skin burn depth evaluation. The analysis can be made on the basis of the development of a thermal model of the burned skin. Different methods such as the traditional clinical visual approach and the IR imaging modalities of static IR thermal imaging, active IR thermal imaging and active-dynamic IR thermal imaging (ADT) are analyzed from the point of view of skin burn depth diagnostics. In ADT, a new approach is proposed on the basis of parametric image synthesis. Calculation software is implemented for single-node and distributed systems. The properties of all the methods are verified in experiments using phantoms and subsequently in vivo with animals with a reference histopathological examination. The results indicate that it is possible to distinguish objectively and quantitatively burns which will heal spontaneously within three weeks of infliction and which should be treated conservatively from those which need surgery because they will not heal within this period

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 2 )