By Topic

A Wavelet-Chaos Methodology for Analysis of EEGs and EEG Subbands to Detect Seizure and Epilepsy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hojjat Adeli ; Dept. of Biomed. Eng., Ohio State Univ., Columbus, OH ; Samanwoy Ghosh-Dastidar ; Nahid Dadmehr

A wavelet-chaos methodology is presented for analysis of EEGs and delta, theta, alpha, beta, and gamma subbands of EEGs for detection of seizure and epilepsy. The nonlinear dynamics of the original EEGs are quantified in the form of the correlation dimension (CD, representing system complexity) and the largest Lyapunov exponent (LLE, representing system chaoticity). The new wavelet-based methodology isolates the changes in CD and LLE in specific subbands of the EEG. The methodology is applied to three different groups of EEG signals: 1) healthy subjects; 2) epileptic subjects during a seizure-free interval (interictal EEG); 3) epileptic subjects during a seizure (ictal EEG). The effectiveness of CD and LLE in differentiating between the three groups is investigated based on statistical significance of the differences. It is observed that while there may not be significant differences in the values of the parameters obtained from the original EEG, differences may be identified when the parameters are employed in conjunction with specific EEG subbands. Moreover, it is concluded that for the higher frequency beta and gamma subbands, the CD differentiates between the three groups, whereas for the lower frequency alpha subband, the LLE differentiates between the three groups

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:54 ,  Issue: 2 )