By Topic

A Memetic Algorithm for Multiple-Drug Cancer Chemotherapy Schedule Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sui-Man Tse ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong ; Yong Liang ; Kwong-Sak Leung ; Kin-Hong Lee
more authors

This correspondence introduces a multidrug cancer chemotherapy model to simulate the possible response of the tumor cells under drug administration. We formulate the model as an optimal control problem. The algorithm in this correspondence optimizes the multidrug cancer chemotherapy schedule. The objective is to minimize the tumor size under a set of constraints. We combine the adaptive elitist genetic algorithm with a local search algorithm called iterative dynamic programming (IDP) to form a new memetic algorithm (MA-IDP) for solving the problem. MA-IDP has been shown to be very efficient in solving the multidrug scheduling optimization problem

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 1 )