By Topic

Estimation of the Dynamic Spinal Forces Using a Recurrent Fuzzy Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yanfeng Hou ; Dept. of Electr. & Comput. Eng., Louisville Univ., KY ; Zurada, J.M. ; Karwowski, W. ; Marras, W.S.
more authors

Estimation of the dynamic spinal forces from kinematics data is very complicated because it involves the handling of the relationship between kinematic variables and electromyography (EMG) signals, as well as the relationship between EMG signals and the forces. A recurrent fuzzy neural network (RFNN) model is proposed to establish the kinematics-EMG-force relationship and model the dynamics of muscular activities. The EMG signals are used as an intermediate output and are fed back to the input layer. Since EMG is a direct reflection of muscular activities, the feedback of this model has a physical meaning. It expresses the dynamics of muscular activities in a straightforward way and takes advantage from the recurrent property. The trained model can then have the forces predicted directly from kinematic variables while bypassing the costly procedure of measuring EMG signals and avoiding the use of a biomechanics model. A learning algorithm is derived for the RFNN model

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 1 )