Cart (Loading....) | Create Account
Close category search window
 

Exploiting multicycle false paths in the performance optimization of sequential logic circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ashar, P. ; C&C Res. Labs., NEC Res. Inst., Princeton, NJ, USA ; Dey, S. ; Malik, S.

This paper addresses the performance optimization problem for sequential logic circuits. It is shown how the notion of false paths, traditionally defined for combinational logic circuits, can be extended to the sequential context by considering the operation of the circuit over multiple clock-cycles. These multicycle false paths can be removed from the circuit using techniques similar to those proposed for combinational logic circuits. This observation offers new techniques to improve the performance of sequential logic circuits. An implementation of an algorithm that uses these ideas shows significant performance improvement on some typical benchmark circuits at a modest area overhead

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:14 ,  Issue: 9 )

Date of Publication:

Sep 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.