By Topic

Restoration and reconstruction of AVHRR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reichenbach, S.E. ; Dept. of Comput. Sci. & Eng., Nebraska Univ., Lincoln, NE, USA ; Koehler, D.E. ; Strelow, D.W.

Describes the design of small convolution kernels for the restoration and reconstruction of Advanced Very High Resolution Radiometer (AVHRR) images. The kernels are small enough to be implemented efficiently by convolution, yet effectively correct degradations and increase apparent resolution. The kernel derivation is based on a comprehensive, end-to-end system model that accounts for scene statistics, image acquisition blur, sampling effects, sensor noise, and postfilter reconstruction. The design maximizes image fidelity subject to explicit constraints on the spatial support and resolution of the kernel. The kernels can be designed with finer resolution than the image to perform partial reconstruction for geometric correction and other remapping operations. Experiments demonstrate that small kernels yield fidelity comparable to optimal unconstrained filters with less computation

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:33 ,  Issue: 4 )