Cart (Loading....) | Create Account
Close category search window
 

Polarimetric calibration of SIR-C using point and distributed targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Sarabandi, K. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Pierce, L.E. ; Dobson, M.C. ; Ulaby, F.T.
more authors

In preparation for the Shuttle Imaging Radar-C/XSAR (SIR-C/XSAR) flights, the University of Michigan has been involved in the development of calibration procedures and precision calibration devices to quantify the complex radar images with an accuracy of 0.5 dB in magnitude and 5 degrees in phase. In this paper, the preliminary results of the SIR-C calibration and a summary of the University of Michigan's activity in the Raco calibration super-site is presented. In this calibration campaign an array of point calibration targets including trihedral corner reflectors and polarimetric active radar calibrators (PARCs) in addition to a uniform distributed target were used for characterizing the radiometric calibration constant and the distortion parameters of the C-band SAR. Two different calibration methods, one based on the application of point targets and the other based on the application of the distributed target, are used to calibrate the SIR-C data and the results are compared with calibrated images provided by JPL. The distributed target used in this experiment was a field of grass, sometimes covered with snow, whose differential Mueller matrix was measured immediately after the SIR-C overpass using The University of Michigan polarimetric scatterometer systems. The scatterometers were calibrated against a precision metallic sphere and measured 100 independent spatial samples for characterizing the differential Mueller matrix of the distributed target to achieve the desired calibration accuracy. The L-band SAR has not yet been adequately calibrated for inclusion here

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:33 ,  Issue: 4 )

Date of Publication:

Jul 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.